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Short Papers

Analyzing the Stability of the FDTD Technique by duce inaccuracies in the location of the roots and, therefore, in the
Combining the von Neumann Method with ranges of stability for the parameters of interest.
the Routh—Hurwitz Criterion The Routh—Hurwitz (R—H) criterion is a procedure widely used to

study the stability of continuous- and discrete-time linear systems [8].
José A. Pereda, Luis A. Vielva, Angel Vegas, and Andrés Prieto This method is able to establish the location of the zeros of a real-coef-
ficient polynomial with respect to the imaginary axis, without actually
solving for the zeros.
Abstract—This paper addresses the problem of stability analysis of fi- This paper proposes combining the von Neumann method with the

nite-difference time-domain (FDTD) approximations for Maxwell's equa- S . L
tions. The combination of the von Neumann method with the Routh—Hur- R-H criterion as an algebraic procedure for deriving closed-form sta-

Witz criterion is proposed as an algebraic procedure for obtaining analytical  Dility expressions for the FDTD method. To illustrate this technique, it
closed-form stability expressions. This technique is applied to the problem is applied to the stability analysis of an extension of the FDTD method,
of determining the stability conditions of an extension of the FDTD method  previously published, which is able to incorporate dispersive media [9].
to incorporate dispersive media previously reported in the literature. Both Itis shown that the scheme introduced in [9] to treat Debye media pre-
Debye and Lorentz dispersive media are considered. It is shown that, for e .
the former case, the stability limit of the conventional FDTD method is S€Tves the stability limit of the conventional FDTD method. However,
preserved. However, for the latter case, a more restrictive stability limit is @ more restrictive stability limit is obtained for the scheme given in [9]
obtained. To overcome this drawback, a new scheme is presented, which al-to treat Lorentz media. To overcome this limitation, a new scheme is
lows the stability limit of the conventional FDTD method to be maintained. presented, which recovers the stability limit of the conventional FDTD
Index Terms—Pispersive media, FDTD methods, Routh’s methods, sta- method.
bility analysis, von Neumann method.

Il. THEORY
. INTRODUCTION A. von Neumann Method

The finite-difference time-domain (FDTD) method is a powerful Each difference scheme has a theoretical exact solution. However,
numerical technique for the solution of electromagnetic problemahen explicit calculations are carried out in a computer, errors are
Based on the finite-difference approximation of the time-dependesnmmitted due to the finite precision of the arithmetic operations. The
Maxwell’s curl equations, this method leads to a conditionally stab&tudy of the stability of a finite-difference scheme consists of finding
scheme. the conditions under which the error—difference between the theoret-

The stability of a difference scheme refers to the unstable growittal and numerical solutions of the finite-difference equation—remains
or stable decay of errors in the arithmetic operations required to solseunded as the number of time iterations tends to infinity.
the finite-difference equations. Due to the conditional stability of the The von Neumann method basically consists of considering a
FDTD method, it is essential to choose a number of parameters—tifrgurier series expansion of the error at the mesh nodes at a given time
step, size of the spatial mesh, etc.—in such a way that the differeriggtantt = nA,. Due to linearity, only a single term of this expansion
scheme remains stable. Thus, the derivation of closed-form analytiogeds to be considered, i.e.,
stability cond?tions is of great theor'etical an_q practiga] interest. N i) = 62" AT Ay kAR 1

The establishment of the analytical stability condition for the con- &N, jy k) = &2 @)
ventional FDTD method (Yee's scheme for isotropic, nondispersi\\/,gh
lossless media) was an early development [1]. More recently, stabil . - : .
conditions were determined for extensions of the conventional FD1i ¢ nodes in the mestya (o = =, y, 2) are the sizes of the discretiza-

. . - : . . . tgn cell, andk,.(a = =z, y, z) are the wavenumbers of the discrete
method to incorporate dispersive media [2], [3], anisotropic media, ap . L

. modes in thex-direction.
lossy media [5], [6]-

Th N thod | bably th ¢ | d In (1), Z is a complex variable, often called the amplification
€ von INeumann method 1s probably theé most popular proce Lfé\%tor, which gives the growth of the error in a time iteration, i.e.,
for determining the stability of finite-difference approximations f0r~n+1(l- i, k) = ZE™(i, j, k). To ensure that a finite-difference

. . . . &
space-time problems [7]. Fora given difference scheme, this techni MReme will be stable, the error must not grow as the time increases
us, the conditionZ| < 1 must be satisfied.

provides an associated polynomial. The condition for stability is that
-To derive the stability condition for a particular scheme, solutions of

ere&y is a complex amplitude, indexésj, k denote the position of

the roots of this polynomial have modulus less than or equal to unity

When applying this method, the root locus is obtained as a function of

the parameters of interest. This technique usually requires exha S(Lleform (1) are substituted into the difference equations. This leads to
P ! -2 Ique usually requi XNaUSUVEL aracteristic polynomial i

numerical root searching, which makes the derivation of closed-form
stability conditions difficult. The numerical searching may also intro- N

S(Z)=>a;Z"7", 2

=0

. ) ) The condition for stability can now be written as
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necessary to perform exhaustive numerical searching for the roots of [ll. APPLICATION

5(2), as a function of these parameters. To illustrate the application of the von Neumann method coupled

with the R—H criterion to study the stability of the FDTD method, we

B. R—H Criteri
riterion have considered an extension of the conventional FDTD method that is

This criterion establishes that the polynomial able to incorporate dispersive media [9]. The stability of these schemes
N has been previously studied by using the von Neumann method and
S(r) = Zbk7’N7kw bo > 0 numerical root searching [2].
‘ —o Consider the following time-dependent wave equation in a

. o ) ) source-free homogeneous dispersive medium
with constant real coefficients, has no roots in the right-half of the

r-plane if all the entries of the first column of the Routh table are non- 92D "
negative quantities. In order to build up the Routh table, the coefficients tam ~ VIE =0. 4)

by are arranged in two rows: the first row consists of the coefficients

that correspond to even powers-ofind the second row consists of the Before approximating this equation by using finite differences, sev-
coefficients that correspond to odd powers-affor simplicity in the ~eral finite-difference operators are introduced. The central finite differ-
notation, and without loss of generality, we assuli¢o be an even €nce and the central average operators with respect to time are defined
number): as

ik =bow, k=0,1,..., N/2 8§, F" =prt/2) _ F"_U/QJ./
o =bokpr, k=0,1,...., N/2—1. pF" = (F”*Wz) + F”*“/Z))/Q
The remaining entries of the table are obtained by using the followiRgspectively [10]. Note that these operators of second-order accuracy

expression: are defined over an interval;. Analogous definitions apply with re-
spect to the spatial coordinates.

Cie = —1 |92 Gk According to Yee's scheme, (4) is approximated by
' Cj—1,1 Cj—1,1 Cj—1, k+1 Y Y
6; 5VL 6; E’L -0 5
wherej = 3,4, ..., N,andk = 0,1, ..., N/2. Therefore, the #A_f - Z Az 5T ®)
Routh table is given by aTEYE
whereé., (o« = =, y, z) denotes the central difference operator with
. L . _ respect to the coordinate indicated by the subscript. For the sake of
c1,0=bo - ¢,k = bag M.N/Q—bN . . L - . .
o _ ’ . simplicity, spatial indexes are not explicitly written since they are not
C2,0 =by - C2 k —b2k+1 Ca N/2 =0 .
0 necessary for the following development.
€3,0 €3,k As mentioned in the preceding section, in order to apply the von Neu-
0 . mann method trial solutions (eigenfunctions) of the form, (1) should be
cio . Ciik 0 substituted into (5), which usually requires quite tedious algebraic ma-
. ’ nipulations. A simpler alternative is used in this paper, which consists
: . : . : of replacing field quantities by their corresponding complex amplitudes
CN,0 0 0 0 0

F’ — FU
The R—H criterion can be used to determine if any root of the stabilig/n

polynomialS(Z) lies outside the unit circle in th&-plane. To this end,
the bilinear transformation

d difference operators by their corresponding eigenvalues

bo —j2sinba,  a=uy,z

r+1 5t—>Z1/2—Z71/2

®3)
o, — (Z1/2 +Z—1/2)/2

is applied taS(Z). As a result, a polynomig(r) in ther-plane is ob-
tained. The above transformation maps the exterior of the unit circle\ifhered,, = i, A, /2. Following this procedure, we have
the Z-plane onto the right-half of the-plane. Therefore, if the polyno-
mial S(r) obtained by applying (3) to (2) has no roots in the right-half (Z—=1)’Do+4Zeorv*Ey =0 (6)
of ther-plane, the polynomia$ (Z) will not have any roots outside the
unit circle in theZ-plane. Consequently, the finite-difference schem@here
associated witly (Z) will satisfy the von Neumann stability condition. Ca s

To find the stability conditions for a difference scheme, as a function V2 = (cosAy)? Z sn .Hw @)
of the parameters of interest, all the entries of the first column of the o2 AZ
Routh table are forced to be nonnegative quantities. This leads to a set
of algebraic inequalities that allow an analytical stability limit to b@ndco. = 1/./fté.
established without numerical root searching. In addition to (4), a constitutive equation relatilfg and E must

There is a special case for which there could still be roots in thee considered. The differential form of this equation depends on the
right-half of ther-plane even if all of the entries of the first column ofdielectric medium type, and its difference form depends on the dis-
the Routh table are nonnegative. This case arises when all the elemerdtization scheme. In the following, constitutive equations for Debye
in one row of the Routh table are zeros. For this special case, the Roatidl Lorentz media along with the discretization schemes introduced in
table can still be built up following the procedure given in [8]. [9] will be considered.
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A. Debye Media
The constitutive equation for a first-order Debye medium can be

Therefore, the difference scheme expressed by (5) and (9) preserves the
e§g_ability limit of the conventional FDTD method.

pressed as
d = d -
oo 5, s ) E=1T— 1)D
<TF clt+F) < dt+)

wherer is the relaxation time constant, andande.. are the static
and the infinite-frequency permittivity, respectively.

(8)

B. Lorentz Media
The constitutive equation for a Lorentz medium can be expressed as

<6m d =+ yﬁ) 13

(13)

d? d 2\ = d?
- 26 €Eoco 5, s W E=1{—
gz TR0t g e ”) <dt2

Equation (8) is a first-order ordinary differential equation (ODE);
thus, it can be discretized by simply using central finite differencesherew, is the resonant frequency afgis the damping coefficient.
Consequently, the above equation in operational difference form regids is a second-order ODE, thus, several centered schemes can be

9)

T€oo
Ay

& + esut) Er = <L & + ut) D",
Ay

As in the wave equation case, replacing the field quantities in (9) 9y= <A?
their complex amplitudes, and operators by their eigenvalues, we have '

€oo [(2?+ES)Z+ES — 2?]50 = [(2?4_ NZ+1- 2;]50
(10)

wheree, = e, /e @and™ = 7/A¢.

Equations (6) and (10) are a set of homogeneous linear equations.

used for its finite-difference approximation. In operational form, the
discretization given in [9] for this equation reads

2(5(](96

Ay

€oo oo p on
=6+ Sy + esw§u2t> E

(L
A7

wherep,, denotes the central average operator defined over a time
interval2Ay, i.e.,

2%

8 + A bupy +U"§I"'2¢) D" (14)
t

By I =

(F"+1 n F"’l)/2.

In order to seek nonzero solutions for the fields, the determinant of the . ) L ) .
coefficient matrix is equated to zero, leading to the stability polynomi&eP!acing the field quantities in (14) by their complex amplitudes and

Sp(Z)= (e, +27)2° + [41/2(1 +27) — & — 6?] z?

+[41/2(1 —27) — & + 6?]Z +& —27. (11)

Now, applying (3) to (11), we obtain the following stability polynomial

in ther-plane
Sp(r) = vt 4ot 4 (ES — 1/2)1' + 2?(1 - 1/2).

The Routh table for this polynomial is

2 €s — V2
27? 27(1 — v?)
& —1 0 '
27(1—v%) 0

Forcing the entries of the first column of the above table to be nonneg-

ative quantities, the following stability conditions are obtained:

Taking (7) into account, the last inequality can be expressed as

.o\ —(1/2)
sin” 6, W/
> Az :

a=mx,y, z

A<

Coo

For

practical calculations, the worst case is takensfor HNW, i.e.,
2 A
sin” 6

« = 1. Thus, the above condition is reduced to

. L\
Affcw< 2 A> '
a=x,y,z

(12)

operators by their eigenvalues, the following equation is obtained:
o (a2Z2 —4Z 4 W)EO - (m 72— 47 + )50 -0 (15)
where

4%} 255—1—2504—2

ay = Wes + 260 + 2

Y= Do — 260 +2

Yo = WoEs — 260 + 2

With Ty = weA¢ anddy = G Ay,

Equations (6) and (15) are a set of homogeneous linear equations.

Again, the stability polynomial is the determinant of the coefficient
matrix

SL(Z) = (wéa + 260 + 2)24
+ [41/2 (w‘é + 25 + 2) — 20, — 450 — 8] Vi
+2 (wﬁa -8 + G)Z2
+ [41/2 (:5 — 25, + 2) — 202E, + 450 — 8]2
+ WoEs — 280 + 2. (16)
After applying (3) to (16), the polynomial stability in theplane reads
Su(ry=7) bir*™

=0

where
bo :w_*gz/Q
bl :450112
by =wioe, + 407
bg :450 (1 bl 1/2)

by :w‘é(gs —1/2) —|—4(1—z/2).
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For this case, the Routh table is

bo bz b4
by b3 0
b1by — bob

(33702M c3,1=bs O
by :

cao = M 0 0
3,0

cs5,0 = ba 0 0

According to the R—H criterion, we obtain the following stability con
ditions from the above table:

bo =av” > 0
b] :4301/2 2 0
c3,0 :I'S (E; -1+ 1/2) + 47 >0

C370b3 - blbq 243035 (1 - 2112) (Es - 1) 2 O

b= (e —v*) +4 (1= 1) 20
which lead to
0 < 6
foo < €4 17)
and
v <1/2. (18)
For practical calculations, the last condition is rewritten as
1 1 —(1/2)
Ay < —— — . 19
e CX\/Z <u1‘z,q: Ai) ( )

Note that this stability condition is more restrictive than that for the

conventional FDTD method.
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by an operator defined ov@r\;. To overcome this limitation, we in-
troduce the following difference scheme to approximate (13):

€oo 2 260 €00 oin
0= <A_2 8 + &t Sepy + w%u?) E
t
1 26 nn
- <P 8 + Tj oipt, + Wgﬂ?) D”. (20)
t

All the terms are now approximated by operators defined dverlt
will be shown that this scheme preserves the stability limit of the con-
ventional FDTD method.

Repeating the procedure carried out in the preceding section, the
following stability polynomial in the -plane is obtained for the present

‘scheme:
4
Sp(r)=> bir'™
1=0
where
ho =W
bl = VQEO

According to the R—H criterion, the stability conditions for this scheme
are

bo =war® >0
by =80 >0
cs0 =1 + (8, —1) >0
¢3.003 — bybs = 5280 (1 - VZ)(ES —1)>0
ba=1—-2"2>0

which leads to

For the sake of comparison with the stability condition given in [2]

for the scheme considered in this section, (18) is expressed in one di-

mension as

s
ﬁprt
which, fore.c A¢/A = 1, leads to

sinf = sin(i{A/?) < 1/\/5

sinf <

thus

kA < /2.

0<bo

foo < €5

and

2

vo <1.

Therefore, this new scheme preserves the stability limit of the conven-
tional FDTD method.

IV. CONCLUSION

In this paper, the combination of the von Neumann method with the
R—H criterion has been used to derive closed-form stability expressions
fohthe FDTD method—avoiding humerical root searching. This tech-

This condition establishes the maximum value of the wavenumber suc

that an eigensolution (discrete plane wave) could propagate in a stab
way. This condition agrees with that given in [2, Section Il]. Note thast
in [2], this condition is associated with some values of the parameﬁer

260 A+ (denoted byh, in [2]). However, according to (17), the only
additional condition, found in this paper, én is that it must be non-
negative.

C. New Difference Scheme for Lorentz Media

As mentioned in the preceding section, the stability condition given

flue has been applied to determine the stability conditions of an exten-
ion of the FDTD method that is able to incorporate dispersive media
reviously reported in the literature. Both Debye and Lorentz media
ave been considered. It has been shown that, for the former case, the
stability limit of the conventional FDTD method is preserved. How-
ever, for the latter case, a more restrictive stability limit was obtained.
Therefore, a new scheme has been introduced to treat Lorentz media
that recovers the stability limit of the conventional FDTD method.
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A Sub-Millimeter Accurate Microwave Multilevel Gauging ~ SPectrum, the multitarget reference model resolves the delays of two
System for Liquids in Tanks adjacent scatterers with the same precision.
The resolution limitations of the IFT approach are demonstrated
Matthias WeiR? and Reinhard Knéchel along with the enhancement offered by the reference model using
physical measurements made with an HP-8510 network analyzer.

Abstract—A microwave multilevel gauging system employing a
frequency-stepped continuous-wave radar measurement technique is
described in this paper. A conventional frequency-modulated contin- Il. DERIVATION OF THE REFERENCEMODEL
uous-wave radar technique is normally employed only to find the level
of the liquid surface in storage tanks. The system described here also  an ESCW system transmits a sequence of sinusoids at different fre-

detects a second level, e.g., the tank floor or an impurity level. If this uencies and measures the steady-state amplitude and phase shift in-
second reflection dominates, distance measurement with the inverse 4 y p p

Fourier transform (IFT) results in poor resolution and shows a very high ~duced by the radar channel [4]. Fig. 1 shows a block diagram of such a
range error for small gaps between these two scatterers. For estimating radar system. A significant benefit of performing the measurements at
the exact time delay and amplitude of the reflection from each scatterer, discrete frequencies is that d|g|ta| signa| processing may be eas”y ap-
an optimal signal-processing algorithm is derived, based on a reference ;e 1 the data. To maximize the range resolution achievable from an
model. Performance of the multiple target-detection reference model ’ . . . .
is illustrated using measured data obtained with an HP-8510 network FSCW radar, a reference model technique is used. By this technique,
analyzer. It is demonstrated that the reference model offers a significant a signal-processing computer produces a set of synthesized data at fre-
enhancement of resolution over the standard processing IFT algorithm quencies where the measurements were taken, and compares it to the
and is insensitive to noise and clutter signals approach. The described physical measurements. The computerized data are based on a physical
system achieves a time-delay accuracy with a bandwidth @ f = 1 GHz, model of the transfer function of the radar channel [5], [6]

which corresponds to a range error of4-0.2 mm. Ll

Finally, the algorithm has to minimize the difference between both

the measured and synthesized data. After minimization is performed,
the parameters of the reference model represent the ranging results.
Best results were achieved with the least squares estimate, described

Index Terms—~SCW radar, gauging, level measurement, microwave
measuring, multilevel measurement, permittivity.

I. INTRODUCTION by
Measurement and control of liquid levels in storage tanks and pro- oiN
cessing vessels is important in many industrial processes. In storage FF = OZ My = Vi - [My — Vi]* (1)
k=kq

where thel,, are the measured complex reflection coefficient p&irs,
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